Braided Elements in Coxeter Groups , Ii

نویسندگان

  • R. M. Green
  • J. Losonczy
چکیده

We continue the study of freely braided elements of simply laced Coxeter groups, which we introduced in a previous work. A known upper bound for the number of commutation classes of reduced expressions for an element of a simply laced Coxeter group is shown to be achieved only when the element is freely braided; this establishes the converse direction of a previous result. It is also shown that a simply laced Coxeter group has finitely many freely braided elements if and only if it has finitely many fully commutative elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximally Clustered Elements of Coxeter Groups

We continue the study of the maximally clustered elements for simply laced Coxeter groups which were recently introduced by Losonczy. Such elements include as a special case the freely braided elements of Losonczy and the author, which in turn constitute a superset of the iji-avoiding elements of Fan. Our main result is to classify the MC-finite Coxeter groups, namely those Coxeter groups havin...

متن کامل

Freely Braided Elements in Coxeter Groups

We introduce a notion of " freely braided element " for simply laced Cox-eter groups. We show that an arbitrary group element w has at most 2 N (w) com-mutation classes of reduced expressions, where N(w) is a certain statistic defined in terms of the positive roots made negative by w. This bound is achieved if w is freely braided. In the type A setting, we show that the bound is achieved only f...

متن کامل

CLASSIFICATION OF COXETER GROUPS WITH FINITELY MANY ELEMENTS OF a-VALUE 2

We consider Lusztig’s a-function on Coxeter groups (in the equal parameter case) and classify all Coxeter groups with finitely many elements of a-value 2 in terms of Coxeter diagrams.

متن کامل

Essays on Coxeter groups Coxeter elements in finite Coxeter groups

A finite Coxeter group possesses a distinguished conjugacy class of Coxeter elements. The literature about these is very large, but it seems to me that there is still room for a better motivated account than what exists. The standard references on thismaterial are [Bourbaki:1968] and [Humphreys:1990], butmy treatment follows [Steinberg:1959] and [Steinberg:1985], from which the clever parts of ...

متن کامل

Coxeter orbits and Brauer trees II

The purpose of this paper is to discuss the validity of the assumptions (W) and (S) stated in [12], about the torsion in the modular l-adic cohomology of Deligne-Lusztig varieties associated with Coxeter elements. We prove that both (W) and (S) hold except for groups of type E7 or E8.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003